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Abstract. We show in this paper that the correspondence between 2-term

representations up to homotopy and VB-algebroids, established in [6], holds
also at the level of morphisms. This correspondence is hence an equivalence of

categories. As an application, we study foliations and distributions on a Lie

algebroid, that are compatible both with the linear structure and the Lie alge-
broid structure. In particular, we show how infinitesimal ideal systems in a Lie

algebroid A are related with subrepresentations of the adjoint representation

of A.

Contents

1. Introduction 1
2. Representations up to homotopy of Lie algebroids 3
2.1. Definition and examples. 3
2.2. Pullbacks. 6
3. Double vector bundles. 6
3.1. Preliminaries. 6
3.2. Dualization of double vector bundles. 9
4. VB-algebroids and morphisms. 10
4.1. VB-algebroids. 10
4.2. Lie algebroid differential. 12
4.3. Morphisms. 14
5. Distributions and foliations. 16
5.1. Double vector subbundles and adapted decompositions. 17
5.2. Infinitesimal ideal systems, distributions on Lie algebroid and

subrepresentations. 20
Appendix A. Dualization of VB-algebroids and representations up to
homotopy. 24
References 26

1. Introduction

There are several definitions of ideals in Lie algebroids. The most obvious one
is the following: Let (q : A → M,ρ, [· , ·]) be a Lie algebroid. An ideal in A is a
subbundle I ⊆ A over M, such that the space of sections Γ(I) is an ideal in Γ(A)
endowed with the Lie bracket [·, ·]. The first immediate consequence of this defi-
nition is the inclusion I ⊆ ker(ρ), which shows that I is totally intransitive. This
notion of ideal is hence not very useful. For instance, an ideal in this sense only
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corresponds to a surjective morphism of algebroids over the same base. Mackenzie
defines ideal systems in his book [10] and shows that the kernel of a fibration of Lie
algebroids is an ideal system in his sense. Two of the authors define in [9] an infini-
tesimal version of this. Infinitesimal ideal systems appear naturally in the study of
multiplicative foliations on Lie groupoids, a subject which have drawn some atten-
tion in connection to geometric quantization of Poisson manifolds [7] and also in a
modern approach to Cartan’s work on Lie pseudogroups [5]. Multiplicative folia-
tions on a Lie group are in one-to-one correspondence with ideals in its Lie algebra
[13, 8]. An ideal in a Lie algebra is a subrepresentation of its adjoint representa-
tion. Hence, with the proper notion of adjoint representation of Lie algebroids, one
expects infinitesimal ideal systems to be equivalent to some subrepresentations of
the adjoint representation. This paper explains how infinitesimal ideal systems and
the adjoint representation of Lie algebroid defined by Gracia-Saz and Mehta [6] and
independently by Arias Abad and Crainic [1] are related.

The approach of Gracia-Saz and Mehta to study Lie algebroid representations is
to view them as VB-algebroids. For instance, flat A-connections on a vector bundle
E →M are in one-to-one correspondence with VB-algebroid structures on

A⊕ E −−−−→ Ey y
A −−−−→ M.

In general, flat A-superconnections correspond to splittings of a canonical short
exact sequence of vector bundles, that is associated to the given VB-algebroid.
The tangent prolongation of a Lie algebroid is for instance a VB-algebroid that
corresponds to the adjoint representation by splitting (via the choice of a connection
on A) the following exact sequence

0 −→ T ∗M ⊗A −→ J1(A) −→ A −→ 0,

where J1A is the first order jet bundle of A. Note that flat superconnections are
the two-term case of the representations up to homotopy defined by Arias Abad
and Crainic in [1].

Our main result on VB-algebroids is the existence of a one-to-one correspon-
dence between morphisms of representation up to homotopy on 2-term complexes
and morphisms of VB-algebroids (Theorem 4.11). This reflects that the correspon-
dence established by Gracia-Saz and Mehta in [6] is actually the correspondence of
objects in an equivalence of categories between the category of representation up
to homotopy of a given Lie algebroid and the category of VB-algebroids with this
Lie algebroid as side. Note that since the tensor product as in [1] of two 2-terms
representations up to homotopy is a 3-term representation up to homotopy, which
does not encode a VB-algebroid structure, this equivalence of categories is not an
equivalence of monoidal categories. There is no known notion of tensor products
in the categories of Lie algebroids.

We apply our results on morphisms to the inclusion of distributions inside the
tangent bundle (see Theorem 5.19). We obtain the equivalence of infinitesimal
ideal systems in a Lie algebroid with subrepresentations of its adjoint and double
representations up to homotopy. We also discuss the case of general (non-integrable)
subbundles of the tangent of a Lie algebroid. In that case, the representations
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up to homotopy lead to a new interpretation of the infinitesimal description of
multiplicative distributions obtained by [5] (see Theorem 5.17).

This paper is organized as follows. Sections 2 and 3 recall background knowledge
on representations up to homotopy and double vector bundles. Section 4 establishes
the one-to-one correspondence between VB-algebroid morphisms and morphisms of
representations up to homotopy on 2-term complexes. We revisit Lie bialgebroids
and IM-2 forms from the perspective of morphisms of representations up to homo-
topy. Section 5 studies (integrable and non integrable) subbundles of the tangent
of a Lie algebroid, that are compatible with the linear and with the Lie algebroid
structure.

We show in the appendix that the dictionary between VB-algebroids and 2-term
representations up to homotopy is compatible with dualizations in each category.

It would be interesting to describe the VB-algebroid counterpart of a quasi-
isomorphism of 2-terms representations up to homotopy. In a work in preparation,
del Hoyo and the third author relate quasi-isomorphisms of Lie groupoid 2-term
representations up to homotopy to a proper notion of Morita equivalence of VB-
groupoids.
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sentation of this work. The authors also thank the anonymous referees for their
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of the Swiss NSF (PBELP2 137534) for research conducted at UC Berkeley, the
hospitality of which she is thankful for. Ortiz would like to thank IMPA (Rio de
Janeiro) for a 2012-Summer Postdoctoral Fellowship and its hospitality while part
of this work was carried out.

2. Representations up to homotopy of Lie algebroids

We recall here some background material on representations up to homotopy.
We mostly follow [1].

2.1. Definition and examples. Let E →M be a vector bundle and V =
⊕

k∈Z Vk
a graded vector bundle. The space of V -valued E-differential forms, Ω(E;V ) :=
Γ(∧•E∗ ⊗ V ), has a grading given by

Ω(E;V )k =
⊕
i+j=k

Γ(∧iE∗ ⊗ Vj)

and a natural (graded-)module structure over the algebra Ω(E) := Γ(∧•E∗).
If W =

⊕
k∈ZWk is a second graded vector bundle, Hom(V,W ) is the graded

vector bundle whose degree k part is

Hom(V,W )k =
⊕
i∈Z

Hom(Vi,Wi+k).

Let now (A, [·, ·], ρA) be a Lie algebroid over M .
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Definition 2.1. A homogeneous A-connection ∇ on the graded vector bundle V =⊕
k∈Z Vk is an A-connection ∇ : Γ(A) × Γ(V ) → Γ(V ) such that ∇a preserves

Γ(Vk), for all k ∈ Z and a ∈ Γ(A). Equivalently, an A-connection on V is given by
a family {∇k}k∈Z, where each ∇k is an A-connection on Vk.

From now on, we assume that all connections on graded vector bundles are
homogeneous.

Definition 2.2. Let V be a graded vector bundle. A representation up to homotopy
of A on V is a degree one map D : Ω(A;V )• → Ω(A;V )•+1 such that D2 = 0 and

(2.1) D(α ∧ ω) = dAα ∧ ω + (−1)kα ∧ D(ω), for α ∈ Ωk(A), ω ∈ Ω(A;V ),

where dA : Ω•(A)→ Ω•+1(A) is the Lie algebroid differential

dAα(a1, . . . , ak+1) =

k∑
i=1

(−1)i+1LρA(ai)α(a1, . . . , ai−1, ai+1, . . . , ak)

+
∑

1≤i<j≤k

(−1)i+jα([ai, aj ], a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , ak).

Definition 2.3. A morphism between two representations up to homotopy of A is
a degree zero Ω(A)-linear map

Ω(A;V )→ Ω(A;W )

which intertwines the differentials DW and DV . We denote it by (A, V )⇒ (A,W ).

In this paper we are mostly concerned with representations up to homotopy
on graded vector bundles V concentrated in degree 0 and 1. These are called 2-
term graded vector bundles and the representations up to homotopy of A on 2-term
graded vector bundles form a category which we denote by Rep2(A). We denote
by Rep2(A) the set of isomorphism classes of objects of Rep2(A).

For a 2-term representation up to homotopy V ∈ Rep2(A), the derivation prop-
erty (2.1) implies that the differential D : Ω(A;V )→ Ω(A;V ) is determined by

(1) a bundle map ∂ : V0 → V1;
(2) an A-connection ∇ on V compatible with ∂ (i.e. ∂ ◦ ∇0 = ∇1 ◦ ∂);
(3) an elementK ∈ Ω2(A,End(V )−1) = Ω2(A,Hom(V1, V0)) such that d∇EndK =

0 and the diagram below commutes

V0 V1

V0 V1

∂
//

∂ //

R∇0

��

R∇1

��

−K

��

where R∇i is the curvature of ∇i, for i = 0, 1. We say that (∂,∇,K) are
the structure operators for V ∈ Rep2(A).

We refer to [1] for a detailed exposition of the correspondence D 7→ (∂,∇,K)
(pointing out that our sign convention for K is different from the one in [1]).

For V,W ∈ Rep2(A), a morphism (A, V ) ⇒ (A,W ) is determined by a triple
(φ0, φ1,Φ), where φ0 : V0 → W0, φ1 : V1 → W1 are bundle maps and Φ ∈
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Ω1(A; Hom(V1,W0)), satisfying

(2.2) φ1 ◦ ∂V = ∂W ◦ φ0,

(2.3) ∇Hom

a (φ0, φ1) = (Φa ◦ ∂V , ∂W ◦ Φa) for all a ∈ Γ(A)

and

(2.4) d∇HomΦ = φ0 ◦KV −KW ◦ φ1,

where ∇Hom is the A-connection on Hom(V,W ) (see [1] for more details).

In the following, given vector bundles E,E′ over M , we denote by E[0]⊕E′[1] the

graded vector bundle consisting of E in degree 0 and of E′ in degree 1.

Example 2.4 (Double representation). Let B → M be a vector bundle and con-
sider the graded vector bundle V = B[0] ⊕ B[1]. Any connection ∇ : Γ(TM) ×
Γ(B) → Γ(B) induces a representation up to homotopy of TM on V by taking
∂ = idB , ∇0 = ∇1 = ∇ and K = −R∇, the curvature of ∇. The isomorphism
class of this representation does not depend on the choice of ∇ and is called the
double representation of TM on B. We denote it by D(B) ∈ Rep2(TM) and the
representation itself by D∇(B) ∈ Rep2(A).

Example 2.5 (Adjoint representation). Let (A, [·, ·]A, ρA) be a Lie algebroid over
M . Any connection ∇ : Γ(TM) × Γ(A) → Γ(A) on A induces a representation
up to homotopy of A on V = A[0] ⊕ TM[1] in the following manner. The map ∂

is just the anchor ρA : A → TM . The A-connection ∇bas on V (called the basic
connection) has degree zero and degree one parts given by

∇bas : Γ(A)× Γ(A) −→ Γ(A)
(a, b) 7−→ [a, b]A +∇ρA(b)a.

and
∇bas : Γ(A)× Γ(TM) −→ Γ(TM)

(a,X) 7−→ [ρA(a), X]A + ρA(∇Xa),

respectively. The element K is the basic curvature Rbas
∇ ∈ Ω2(A,Hom(TM,A))

defined by

Rbas
∇ (a, b)(X) = ∇X [a, b]− [∇Xa, b]− [a,∇Xb] +∇∇bas

a X b−∇∇bas
b X a.

As before, the isomorphism class of this representation does not depend on the choice
of ∇ and it is called the adjoint representation of A. We denote it by ad ∈ Rep2(A)
and the representation itself by ad∇ ∈ Rep2(A).

Given a 2-term representation V ∈ Rep2(A) with structure operators (∂,∇,K)
of A on V = V0⊕V1, its dual is the representation V > ∈ Rep2(A), where V >0 = V ∗1 ,
V >1 = V ∗0 , with structure operators given by

(2.5) ∂V > = ∂∗, ∇V
>

= ∇∗ and KV > = −K∗

where ∇∗ is the A-connection dual to ∇, given by

(2.6) 〈∇∗aξ, v〉+ 〈ξ,∇av〉 = LρA(a)〈ξ, v〉, ∀v ∈ Γ(V ), ξ ∈ Γ(V >).

Example 2.6 (Coadjoint representation). The coadjoint representation is the rep-
resentation of A on T ∗M[0] ⊕A∗[1] dual to the adjoint representation. It is denoted

by ad>(A) ∈ Rep2(A).
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2.2. Pullbacks. We define here morphisms between 2-term representations up to
homotopy of different Lie algebroids. Let (A′, [·, ·]A′ , ρA′) be another Lie algebroid
over M and T : A→ A′ a Lie algebroid morphism over idM . Choose W ∈ Rep2(A′)
with structure operators (∂,∇,K).

Define ∇T : Γ(A)× Γ(W )→ Γ(W ) to be the A-connection given by

(2.7) ∇T

aw := ∇T (a)w

for a ∈ Γ(A) and w ∈ Γ(W ) and T ∗K ∈ Ω2(A; Hom(W1,W0)) by

(2.8) T ∗K(a1, a2) = K(T (a1), T (a2)), (a1, a2) ∈ A×M A.

Lemma 2.7. The triple (∂,∇T , T ∗K) defines structure operators for a represen-
tation up to homotopy of A on W which is called the pullback of W by T and it is
denoted by T !W ∈ Rep2(A).

Proof. We leave the details to the reader. �

Example 2.8. If T is the inclusion of a Lie subalgebroid A ↪→ A′, the pullback
T !W is just the restriction of the representation to A.

The usefulness of taking pullbacks is that it allows one to define morphisms
between representations up to homotopy of different algebroids.

Definition 2.9. Let W ∈ Rep2(A′) and V ∈ Rep2(A) be representations up to
homotopy. We define a morphism (A, V )⇒ (A′,W ) over a Lie algebroid morphism
T : A → A′ to be an usual morphism (A, V ) ⇒ (A, T !W ) (as given in Definition
2.3).

Remark 2.10. The pullback operation can be defined for arbitrary representations
up to homotopy. It was already defined in this generality for representations up to
homotopy of Lie groupoids in [1]. Also, the pullback can be extended to morphisms
and we get a functor T ! : Rep2(A′)→ Rep2(A).

3. Double vector bundles.

We briefly recall the definitions of double vector bundles, of some of their special
sections and of their morphisms. We refer to [10] for a more detailed treatment
(see also [6] for a treatment closer to ours). We also classify subbundles of double
vector bundles.

3.1. Preliminaries.

Definition 3.1. A double vector bundle is a commutative square

D
qDB−−−−→ B

qDA

y yqB
A −−−−→

qA
M

satisfying the following three conditions:

DV1. all four sides are vector bundles;
DV2. qDB is a vector bundle morphism over qA;
DV3. +

B

: D ×B D → D is a vector bundle morphism over + : A ×M A → A,

where +
B

is the addition map for the vector bundle D → B.
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Given a double vector bundle (D;A,B;M), the vector bundles A andB are called
the side bundles. The zero sections are denoted by 0A : M → A, 0B : M → B,
A0 : A→ D and B0 : B → D. Elements of D are written (d; a, b;m), where d ∈ D,
m ∈M and a = qDA (d) ∈ Am, b = qDB (d) ∈ Bm.

The core C of a double vector bundle is the intersection of the kernels of qDA and
qDB . It has a natural vector bundle structure over M , the projection of which we
call qC : C →M . The inclusion C ↪→ D is usually denoted by

Cm 3 c 7−→ c ∈ (qDA )−1(0A

m) ∩ (qDB )−1(0B

m).

Definition 3.2. Let (D;A,B;M) and (D′;A′, B′;M) be two double vector bundles.
A double vector bundle morphism (F ;Fver, Fhor; f) from D to D′ is a commutative
cube

A

M

A′

M

D

B

D′

B′

66

Fver

//

f //66

66

F //

Fhor //66

��

��

��

��

where all the faces are vector bundle morphisms.

Given a double vector bundle morphism (F ;Fver, Fhor; f), its restriction to the
core bundles induces a vector bundle morphism Fc : C → C ′. In the following, we
are mainly interested in double vector bundle morphisms where f = idM : M →M .
In this case, we omit the reference to f and denote a double vector bundle morphism
by (F ;Fver, Fhor).

Given a double vector bundle (D;A,B;M), the space of sections Γ(B,D) is
generated as a C∞(B)-module by two distinguished classes of sections (see [11]),
the linear and the core sections which we now describe.

Definition 3.3. For a section c : M → C, the corresponding core section ĉ : B → D
is defined as

(3.1) ĉ(bm) = B0
bm

+
A

c(m), m ∈M, bm ∈ Bm.

We denote the space of core sections by Γc(B,D).

Definition 3.4. A section X ∈ Γ(B,D) is called linear if X : B → D is a bundle
morphism from B → M to D → A. The space of linear sections is denoted by
Γ`(B,D).

The space of linear sections is a locally free C∞(M)-module (see e.g. [6]). Hence,

there is a vector bundle Â over M such that Γ`(B,D) is isomorphic to Γ(Â) as
C∞(M)-modules. Note that for a linear section X , there exists a section X0 : M →
A such that qDA ◦ X = X0 ◦ qB . The map X 7→ X0 induces a short exact sequence
of vector bundles

(3.2) 0 −→ B∗ ⊗ C ↪−→ Â −→ A −→ 0,

where for T ∈ Γ(B∗ ⊗ C), the corresponding section T̂ ∈ Γ`(B,D) is given by

(3.3) T̂ (bm) = B0bm +
A

T (bm).
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We call splittings h : A→ Â of the short exact sequence (3.2) horizontal lifts.

Example 3.5. Let A, B, C be vector bundles over M and consider D = A⊕B⊕C.
With the vector bundle structures D = q!

A(B ⊕ C)→ A and D = q!
B(A⊕ C)→ B,

one has that (D;A,B;M) is a double vector bundle called the trivial double vector
bundle with core C. The core sections are given by

bm 7→ (0A

m, bm, c(m)), where m ∈M, bm ∈ Bm, c ∈ Γ(C).

The space of linear sections Γ`(B,D) is naturally identified with Γ(A)⊕Γ(B∗⊗C)
via

(a, T ) : bm 7→ (a(m), bm, T (bm)), where T ∈ Γ(B∗ ⊗ C), a ∈ Γ(A).

The canonical inclusion Γ(A) ↪→ Γ`(B,D) is a horizontal lift.
Let A′, B′, C ′ be another triple of vector bundles over M and consider the corre-

sponding trivial double vector bundle with core C ′, D′ = A′ ⊕B′ ⊕C ′. Any double
vector bundle morphism (F ;Fver, Fhor) from D to D′ is given by

(3.4) (a, b, c) 7→ (Fver(a), Fhor(b), Fc(c) + Φa(b))

where Fc : C → C ′ is a vector bundle morphism and Φ ∈ Γ(A∗ ⊗B∗ ⊗ C ′).

A decomposition for a double vector bundle (D;A,B;M) is an isomorphism σ
of double vector bundles from the trivial double vector bundle with core C to
D covering the identities on the side bundles A, B and inducing the identity on
the core C. The space of decompositions for D will be denoted by Dec(D). We
recall now how this is an affine space over Γ(A∗ ⊗ B∗ ⊗ C). Given an element
Φ ∈ Γ(A∗ ⊗B∗ ⊗ C), consider the double vector bundle morphism

(3.5)
IΦ : A⊕B ⊕ C −→ A⊕B ⊕ C

(a, b, c) 7−→ (a, b, c+ Φa(b))

obtained from (3.4) by taking Fver, Fhor, Fc to be the identity morphisms. For a
decomposition σ,

(3.6) Φ · σ := σ ◦ IΦ
defines the affine structure on Dec(D).

Remark 3.6. The space of horizontal lifts is also affine over Γ(A∗⊗B∗⊗C) (this
follows directly from the definition of horizontal lifts). There is a natural one-to-one
correspondence between decompositions and horizontal lifts for D [6]. Concretely,
given a horizontal lift h, the decomposition σh : A⊕B ⊕ C → D is given by

(3.7) σh(am, bm, cm) = h(a)(bm) +
B

(B0
bm

+
A

cm),

where m ∈ M and a ∈ Γ(A) is any section with a(m) = am. Conversely, given a
decomposition σ : A⊕B ⊕ C → D, the map hσ : Γ(A)→ Γ`(B,D),

(3.8) hσ(a)(bm) = σ(a(m), bm, 0
C
m), m ∈M,

is a horizontal lift. The map h 7→ σh and its inverse σ 7→ hσ are affine.

Example 3.7. For a vector bundle B →M ,

TB −−−−→ By y
TM −−−−→ M
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is a double vector bundle with core bundle B →M . The core section corresponding
to b ∈ Γ(B) is the vertical lift b↑ : B → TB. One has that

b↑(`ψ) = 〈ψ, b〉 ◦ qB and b↑(f ◦ qB) = 0,

where `ψ, f ◦ qB ∈ C∞(B) are the linear function and the pullback function corre-
sponding to ψ ∈ Γ(B∗) and f ∈ C∞(M), respectively. An element of Γ`(B, TB)
is called a linear vector field. It is well-known (see e.g. [10]) that a linear vec-
tor field X : B → TB covering x : M → TM corresponds to a derivation
L : Γ(B∗)→ Γ(B∗) having x as its symbol. The precise correspondence is given by

X(`ψ) = `L(ψ) and X(f ◦ qB) = Lx(f) ◦ qB .
Hence, the choice of a horizontal lift for (TB;TM,B;M) is equivalent to the choice
of a connection on B∗. For convenience, we shall prefer working with the dual
connection on B (see (2.6)). In this case, one can identify Dec(TB) with the space
of connections on B.

Example 3.8. Let A → M be a vector bundle and consider TA → TM as the
horizontal side bundle of the tangent double,

TA −−−−→ TMy y
A −−−−→ M.

For any a ∈ Γ(A), Ta : TM → TA is a linear section covering a itself. Yet, the map
a 7→ Ta splits (3.2) only at the level of sections, as it fails to be C∞(M)-linear.
The choice of a connection ∇ on A restores the C∞(M)-linearity and induces a
horizontal lift by

(3.9) h(a)(x) = Ta(x) +
TM

(T0(x)−∇xa), x ∈ TM, a ∈ Γ(A).

The associated decomposition σh ∈ Dec(TA) coincides with the one induced by ∇
as in Example 3.7.

3.2. Dualization of double vector bundles. Given a double vector bundle
(D;A,B;M) with core C, its horizontal dual is the double vector bundle

(3.10)

D∗B
pB−−−−→ B

phor
C∗

y yqB
C∗ −−−−→

qC∗
M,

where pB : D∗B → B is the dual of qDB : D → B and, for ξ ∈ (pB)−1(bm),

(3.11) 〈phor
C∗

(ξ), cm〉 = 〈ξ, B0bm +
A

cm〉.

The core bundle of D∗B is A∗ →M . Similarly, the vertical dual is the double vector
bundle

(3.12)

D∗A
pver
C∗−−−−→ C∗

pA

y yqC∗
A −−−−→

qA
M
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with core B∗ →M .
In the following, we are mostly interested in the horizontal dual. For ψ ∈ Γ(A∗),

the corresponding core section ψ̂ ∈ Γc(B,D
∗
B) is just (qDA )∗ψ. In particular,

(3.13) 〈ψ̂, ĉ〉 = 0

for c ∈ Γ(C) and

(3.14) 〈ψ̂, h(a)〉 = 〈ψ, a〉 ◦ qB
for a ∈ Γ(A) and any horizontal lift h : A→ Â.

Given a decomposition σ : A ⊕ B ⊕ C → D, the inverse of its dual over B,
(σ∗B)−1 : B ⊕ C∗ ⊕A∗ → D∗B , is a decomposition for D∗B .

Example 3.9. Let B → M be a vector bundle and consider its tangent double
(TB;TM,B;M). The projection of the cotangent bundle T ∗B to B∗ is given, for
ξ ∈ T ∗bmB, by

〈phor
B∗ (ξ), cm〉 =

〈
ξ,

d

dt

∣∣∣∣
t=0

(bm + tcm)

〉
, for cm ∈ Bm, m ∈M.

Given a decomposition σ : TM⊕B⊕B → TB, let ∇ be the corresponding connection
on B. The inverse of the dual of σ over B induces a horizontal lift h : Γ(B∗) →
Γ`(B, T

∗B) given by

h(ψ)(bm) = (σ∗B)−1(bm, ψ(m), 0TMm ) = d`ψ(bm)− 〈∇TqB(·) ψ, bm〉 ∈ T ∗bmB,

where `ψ ∈ C∞(B) is the linear function corresponding to ψ ∈ Γ(B∗).

4. VB-algebroids and morphisms.

Gracia-Saz and Mehta show in [6] how representations up to homotopy of a Lie
algebroid on a 2-term graded vector bundle encode the Lie algebroid structures of
VB-algebroids. These are double vector bundles with some additional Lie algebroid
structure that is compatible with the double vector bundle structure. In this section,
we recall this correspondence and show how it can be extended to morphisms. We
also check in Appendix A that it behaves well under dualization.

4.1. VB-algebroids. We begin with the definition of VB-algebroids. We follow [6]
in our treatment of the subject.

Definition 4.1. Let (D;A,B;M) be a double vector bundle. We say that (D →
B;A→M) is a VB-algebroid if D → B is a Lie algebroid, the anchor ρD : D → TB
is a bundle morphism over ρA : A→ TM and the three Lie bracket conditions below
are satisfied:

(i) [Γ`(B,D),Γ`(B,D)]D ⊂ Γ`(B,D);
(ii) [Γ`(B,D),Γc(B,D)]D ⊂ Γc(B,D);
(iii) [Γc(B,D),Γc(B,D)]D = 0.

A VB-algebroid structure on (D;A,B;M) naturally induces a Lie algebroid
structure on A by taking the anchor to be ρA and the Lie bracket [·, ·]A defined as fol-
lows: if X ,Y ∈ Γ`(B,D) cover X0,Y0 ∈ Γ(A) respectively, then [X ,Y]D ∈ Γ`(B,D)
covers [X0,Y0]A ∈ Γ(A). We call A the base Lie algebroid of D.

The next result from [6] relates VB-algebroid structures on trivial double vector
bundles and representations up to homotopy. Note that Arias Abad and Crainic
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show a related result on the relationship between representations up to homotopy
and Lie algebroid extensions [1, Proposition 3.9.].

Proposition 4.2. Let (A, ρA, [·, ·]A) be a Lie algebroid over M . Let B → M and
C → M be vector bundles. There is a one-to-one correspondence between VB-
algebroid structures on the trivial double vector bundle A ⊕ B ⊕ C with core C
and A as side Lie algebroid, and 2-term representations up to homotopy of A on
V = C[0] ⊕B[1].

Let us give an explicit description of the VB-algebroid structure onD = A⊕B⊕C
corresponding to a 2-term representation (∂,∇,K) of A on C[0]⊕B[1]. For a ∈ Γ(A),
let h : Γ(A) ↪→ Γ`(B,D) be the canonical inclusion of Example 3.5. Define as follows
the anchor of D, ρD : D → B, on linear and core sections:

(4.1) ρD(h(a)) = X∇1
a
, ρD(ĉ) = ∂(c)↑,

where X∇1
a
, ∂(c)↑ ∈ X(B) are, respectively, the linear vector field corresponding to

the derivation ∇1
a
∗

: Γ(B∗) → Γ(B∗) and the vertical vector field corresponding
to ∂(c) ∈ Γ(B) (see Example 3.7). The Lie bracket [·, ·]D on Γ(D) is given by the
formulas below:

[ĉ1, ĉ2]D = 0

(4.2) [h(a), ĉ ]D = ∇̂0
a c,

and

(4.3) [h(a1), h(a2)]D = h([a1, a2]A) + K̂(a1, a2)

where a, a1, a2 ∈ Γ(A) and c, c1, c2 ∈ Γ(C) and K̂(a1, a2) ∈ Γ`(B,D) is the linear
section given by (3.3).

Remark 4.3. A VB-algebroid structure on a general double vector bundle (D;A,B;M)
induces a representation up to homotopy of the base Lie algebroid A on C[0]⊕B[1]

once a decomposition σ : A ⊕ B ⊕ C → D is chosen. The structure operators
(∂,∇,K) are obtained from exactly the same formulas (4.1), (4.2) and (4.3) by
taking h : Γ(A) → Γ`(B,D) as the horizontal lift corresponding to σ. The iso-
morphism class of this representation does not depend on the choice of the decom-
position. More precisely, if σ̃ is another decomposition, then σ̃ = Φ · σ, for some

Φ ∈ Γ(A∗ ⊗B∗ ⊗ C) and the structure operators (∂̃, ∇̃, K̃) corresponding to σ̃ are
given by

(4.4) ∂̃ = ∂;

(4.5) ∇̃0
a = ∇0

a − Φa ◦ ∂ and ∇̃1
a = ∇1

a − ∂ ◦ Φa;

(4.6) K̃(a, b) = K(a, b) + d∇HomΦ(a, b) + Φb ◦ ∂ ◦ Φa − Φa ◦ ∂ ◦ Φb,

for a, b ∈ Γ(A). Moreover, (idC , idB ,Φ) are the components of an Ω(A)-linear

isomorphism Ω(A,C[0] ⊕B[1])→ Ω(A,C[0] ⊕B[1]) which intertwines D and D̃ (see
[6] for more details).

The next two Examples recall how the double and the adjoint representation
arise in this way from VB-algebroids.
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Example 4.4. The tangent double (TB;TM ;B;M) of a vector bundle B → M
is canonically endowed with a VB-algebroid structure (TB → B;TM → M) with
ρTB = idB, ρTM = idTM and [·, ·]TB given by the Lie bracket of vector fields. A

horizontal lift h : TM → T̂M is equivalent to a connection ∇ : Γ(TM) × Γ(B) →
Γ(B) (see Example 3.7). Equations (4.1) and (4.2) imply the equality ∂ = idB and
show that the connection on B[0]⊕B[1] is given by ∇ in degree 0 and 1. The equality
K = −R∇, with R∇ the curvature of ∇, follows from (4.3). Hence, the element
on Rep2(TM) associated to (TB → B;TM → M) is the isomorphism class of the
double representation of TM on B ⊕B (see Example 2.4).

Example 4.5. Let (A, ρA, [·, ·]A) be a Lie algebroid over M . The tangent prolon-
gation (TA;A, TM ;M) of A has a VB-algebroid structure (TA → TM ;A → M).
We refer to [10] for more details about this. Gracia-Saz and Mehta show that the el-
ement on Rep2(A) associated to such a VB-algebroid structure is exactly the adjoint
representation of A [6].

Given a VB-algebroid (D → B;A → M), one can prove (see [11]) that the
vertical dual (D∗A → C∗;A→M) is a VB-algebroid. By choosing a decomposition
σ ∈ Dec(D), the inverse of its dual over A, (σ∗A)−1, is a decomposition for D∗A. In
Appendix A, we prove that the representations up to homotopy associated to σ and
(σ∗A)−1 are dual to each other.

Example 4.6. Let (A, [·, ·]A, ρA) be a Lie algebroid over M . By Proposition A.1,
the VB-algebroid structure of (T ∗A→ A∗;A→M) obtained from taking the vertical
dual of the tangent prolongation (TA → TM ;A → M) gives rise to the coadjoint

representation ad> ∈ Rep2(A), the isomorphism class of the representation up to
homotopy dual to the adjoint representation of A. We refer to [10] for more details
concerning the cotangent Lie algebroid T ∗A→ A∗.

4.2. Lie algebroid differential. Let (A, ρA, [·, ·]A) be a Lie algebroid over M .
Given a 2-term representation up to homotopy of A on V = C[0] ⊕ B[1], we inves-
tigate how the Lie algebroid differential dD of D → B, where D = A ⊕ B ⊕ C,
is related to the structure operators (∂,∇,K). Let h : Γ(A) ↪→ Γ`(B,D) be the
natural inclusion considered in Example 3.5.

First of all, it is straightforward to check that, for f ∈ C∞(M),

(4.7) dD(f ◦ qB) = (ρA ◦ qDA )∗(df) = qD ∗A (dAf),

where dA is the Lie algebroid differential of A.
In the following, recall the identification Γ`(B,D

∗
B) = Γ(A∗ ⊗B∗)⊕ Γ(C∗) (see

Example 3.5).

Lemma 4.7. Let `ψ ∈ C∞(B) be the linear function associated to ψ ∈ Γ(B∗). The
map dD(`ψ) : B −→ D∗B is a linear section given by

(4.8) dD(`ψ) = (d∇∗ψ, ∂
∗ψ)

where ∇∗ is the A-connection on V ∗ = B∗[0]⊕C
∗
[1] dual to ∇ and d∇∗ : Ω(A;V ∗)→

Ω(A;V ∗) is the Koszul differential.

Proof. The result that dD(`ψ) is a linear section follows from the fact that d`ψ :
B −→ T ∗B is a linear section of the cotangent bundle (covering ψ itself) and
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ρD : D → TB is a double vector bundle morphism. Also, for bm ∈ B, one has

〈phor
C∗ (dD`ψ), cm〉 = d`ψ(ρD(0̃bm +

A

cm)) =
d

dt

∣∣∣∣
t=0

〈ψ(m), bm + t∂(cm)〉 = 〈∂∗ψ(m), cm〉.

Finally, since ρD(h(a)) is the linear vector field on B which corresponds to the
derivation ∇a on Γ(B), it follows that

〈dD(`ψ), h(a)〉 = LρD(h(a))`ψ = `∇∗a ψ.

Formula (4.8) follows immediately. �

Now let us consider the degree one part of dD (i.e. dD : Γ(D∗B) → Γ(∧2D∗B)).
As D = q!

B(A⊕ C) as a vector bundle over B, one has

(4.9) ∧2 D∗B = q!
B(∧2A∗ ⊕ (A∗ ⊗ C∗)⊕ ∧2C∗).

Lemma 4.8. Choose ψ ∈ Γ(A∗) and consider the corresponding core section ψ̂ ∈
Γc(B,D). With respect to the decomposition (4.9), one has

(4.10) dDψ̂ : bm 7−→ ( dAψ(m), 0A∗⊗C∗

m , 0∧
2C∗

m ).

Proof. Choose a1, a2 ∈ Γ(A). As ρD : D → TB is a vector bundle morphism over
ρA : A→ TM , one has that TqB ◦ρD(h(ai)) = ρA◦qDA (h(ai)) = ρA(ai), for i = 1, 2.

Also, it follows from (3.14) that 〈ψ̂, h(ai)〉 = 〈ψ, ai〉 ◦ qB , for i = 1, 2. It is now
straightforward to check that

dDψ̂(h(a1), h(a2)) = (dAψ(a1, a2)) ◦ qB − 〈ψ̂, K̂(a1, a2)〉 = (dAψ(a1, a2)) ◦ qB .
As for the component on A∗ ⊗ C∗, we have

dDψ̂(h(a1), ĉ) = LρD(h(a1))〈ψ̂, ĉ〉 − LρD(ĉ)〈ψ̂, h(a1)〉 − 〈ψ̂, [h(a1), ĉ ]D〉 = 0.

The first and the last term on the right hand side vanish because of (3.13). Also,
since ρD(ĉ) is a vertical vector field, it follows with (3.14) that the second term on
the right hand side vanishes. One can prove in a similar manner that the component
on ∧2C∗ is also zero. �

Lemma 4.9. Let Q ∈ Γ(A∗⊗B∗) and γ ∈ Γ(C∗).With respect to the decomposition
(4.9), we have

(4.11) dD(Q, 0) : bm 7−→ (〈d∇∗Q, bm〉,−(idA∗ ⊗ ∂∗)(Q), 0∧
2C∗

m ),

and

(4.12) dD(0, γ) : bm 7−→ (−〈K∗γ, bm 〉, d∇∗γ, 0∧
2C∗

m ),

Proof. Fix a1, a2 ∈ Γ(A) and c ∈ Γ(C). We have

dD(Q, 0)(h(a1), h(a2)) = LρD(h(a1)) `Q(a2)−LρD(h(a2)) `Q(a1)−〈(Q, 0), [h(a1), h(a2)]D〉 .
As ρD(h(ai)) ∈ X(B) is the linear vector field corresponding to ∇ai , we have

LρD(h(ai)) `Q(aj) = `∇∗ai
Q(aj), for 1 ≤ i 6= j ≤ 2.

Also, by (3.13) and (4.3), we get〈
(Q, 0), [h(a1), h(a2)]D

〉
=
〈
(Q, 0), h([a1, a2]A)

〉
= `Q([a1,a2]A).

The formula for the component on ∧2A∗ now follows by assembling the terms.
Similarly, using that 〈(Q, 0), ĉ〉 = 〈(Q, 0), [h(a1), ĉ ]D〉 = 0, we get

dD(Q, 0)(h(a1), ĉ) = −LρD(ĉ)`Q(a1) = 〈Q(a1),−∂(c)〉 ◦ qB .
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It is straightforward to check now that the component in ∧2C∗ is zero. The proof
of (4.12) is a similar computation that we leave to the reader. �

4.3. Morphisms.

Definition 4.10. Let (D → B;A → M) and (D′ → B′;A′ → M) be VB-
algebroids. A VB-algebroid morphism from D to D′ is a double vector bundle
morphism (F ;Fver;Fhor) from D to D′ such that F is a Lie algebroid morphism.

Our aim is to relate VB-algebroid morphisms with morphisms of representations
up to homotopy. Using decompositions, it suffices to consider morphisms F between
trivial double vector bundles D = A⊕B⊕C and D′ = A′⊕B′⊕C ′. From Example
3.5, we know that a double vector bundle morphism F : D → D′ is determined
by vector bundle morphisms Fver : A → A′, Fhor : B → B′, Fc : C → C ′ and
Φ ∈ Ω1(A,Hom(B,C ′)).

Theorem 4.11. F : D → D′ is a VB-algebroid morphism if and only if Fver : A→
A′ is a Lie algebroid morphism and (Fc, Fhor,Φ) are the components of a morphism
(A, V )⇒ (A′,W ) over Fver between the associated representations up to homotopy
V = C[0] ⊕B[1] ∈ Rep2(A) and W = C ′[0] ⊕B

′
[1] ∈ Rep2(A′).

Remark 4.12. Combining the results in [6] with Theorem 4.11 we conclude that the
category of 2-term representations up to homotopy of a Lie algebroid A is equivalent
to the category of VB-algebroids with side algebroid A.

In the following, let dD and dD′ be the Lie algebroid differentials of D → B and
D′ → B′, respectively. Recall that F : D → D′ is a Lie algebroid morphism if
and only if the associated exterior algebra morphism, F ∗ : Γ(∧•D′∗B′)→ Γ(∧•D∗B),
intertwines dD and dD′

1. Theorem 4.11 will follow from the thorough study of
the relation F ∗ ◦ dD′ = dD ◦ F ∗, which we carry on in Lemmas 4.14 and 4.15
below. First, we shall need a Lemma which gives useful formulas for F ∗ in degree
1, F ∗ : Γ(D′

∗
B′)→ Γ(D∗B).

Lemma 4.13. Choose Q ∈ Γ(B′∗ ⊗ A′∗), γ ∈ Γ(C ′∗) and ψ ∈ Γ(A′∗). Then

F ∗ψ̂ = F̂ ∗verψ and F ∗(Q, γ) = (F ∗ver ⊗ F ∗hor(Q) + 〈Φ, γ〉, F ∗c γ).

Proof. The result follows directly from Example 3.5. We leave the details to the
reader. �

Let now (∂W ,∇W ,KW ) and (∂V ,∇V ,KV ) be the structure operators of the
representations up to homotopy of A on V = C[0]⊕B[1] and of A′ on W = C ′[0]⊕B

′
[1],

respectively, and let ∇Hom be the A-connection on Hom(V,W ) obtained from ∇V
and (∇W )Fver (see (2.7)).

Lemma 4.14. F ∗ ◦ dD′ = dD ◦ F ∗ holds on Γ(∧0D′
∗
B′) = C∞(B′) if and only if

(4.13) ρA′ ◦ Fver = ρA,

(4.14) Fhor ◦ ∂V = ∂W ◦ Fc
and

(4.15) ∇Hom
a Fhor = ∂W ◦ Φa, ∀ a ∈ Γ(A).

1Recall that F ∗ is defined by (F ∗ω)(b)(d1(b), . . . , dn(b)) = ωFhor(b)
(F (d1(b)), . . . , F (dn(b)))

for ω ∈ Γ(∧nD′∗B′ ), b ∈ B and d1, . . . , dn ∈ Γ(B,D). In particular, we have F ∗(g) = g ◦ Fhor, for

g ∈ C∞(B) = Γ(∧0D′∗B′ ).
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Proof. It suffices to consider f ◦ qB′ , for f ∈ C∞(M) and linear functions `β , for
β ∈ Γ(B′

∗
). Now, (4.13) follows directly from (4.7). For the other two equations,

first observe that F ∗(`β) = `F∗horβ . The identity

dD(`F∗horβ
) = (d∇V ∗F ∗hor β, (Fhor ◦ ∂V )∗β) ∈ Γ(A∗ ⊗B∗)⊕ Γ(C∗)

follows from (4.8). On the other hand, due to (4.8) and Lemma 4.13, we have
F ∗(dD(`β)) = (Q, γ), where

Q = F ∗ver ⊗ F ∗hor (d∇W ∗β) + 〈Φ, ∂∗Wβ〉

γ = (∂W ◦ Fc)∗β.
By comparing the components in Γ(C∗) and Γ(A∗⊗B∗), one finds equations which
are dual to (4.14) and (4.15), respectively. This proves the lemma. �

Lemma 4.15. F ∗ ◦ dD′ = dD ◦ F ∗ holds on Γ(∧1D′∗B′) if and only if

(4.16) dA ◦ F ∗ver = F ∗ver ◦ dA′ in Γ(A′∗),

(4.17) ∇Hom
a Fc = Φa ◦ ∂V , ∀ a ∈ Γ(A)

and

(4.18) d∇HomΦ = Fc ◦KV − (F ∗verKW ) ◦ Fhor.

Proof. It suffices to consider core sections ψ̂ and linear sections of the type (0, γ),

where γ ∈ Γ(C ′∗) and ψ ∈ Γ(A′∗). Equation (4.16) is equivalent to F ∗ ◦ dD′(ψ̂) =

dD ◦ F ∗(ψ̂). Now, according to the decomposition (4.9), we find F ∗ ◦ dD′(0, γ) =
(Λ1,Λ2,Λ3), where Λ3 is the zero section of ∧2q!

BC
∗,

Λ1(bm) = −〈 (F ∗verKW )∗γ, Fhor(bm) 〉+ (F ∗ver ∧ Φ∗(bm))(d∇W ∗γ(m)),

and

Λ2(bm) = F ∗ver ⊗ F ∗c (d∇W ∗γ(m)),

where m ∈ M , bm ∈ Bm and Φ(bm) is seen as a map from A to C ′ with dual
Φ∗(bm) : C ′∗ → A∗. Similarly, by Lemma 4.13 and formulas (4.11), (4.12), it
follows that dD(F ∗(0, γ)) = dD(〈Φ, γ〉, F ∗c γ) = (Θ1,Θ2,Θ3), where Θ3 is again the
zero section of ∧2q!

BC
∗,

Θ1(bm) = 〈d∇V ∗〈Φ, γ〉, bm〉 − 〈K∗V (F ∗c γ), bm〉.
and

Θ2(bm) = −(id∗A ⊗ ∂∗V )〈Φ, γ(m)〉+ d∇V ∗F ∗c γ(m).

The equalities Λ2 = Θ2 and Λ1 = Θ1 are equivalent to the equations dual to (4.17)
an (4.18), respectively. �

Proof of Theorem 4.11. Equations (4.13) and (4.16) are equivalent to Fver being a
Lie algebroid morphism. Similarly, equations (4.14), (4.15), (4.17) and (4.18) are
equivalent to (Fc, Fhor,Φ) being the components of a morphism (A, V )⇒ (A′,W ).
This proves the Theorem. �

Example 4.16. Let (A, [·, ·]A, ρA) be a Lie algebroid over M . An IM-2-form [4]
on A is a pair (µ, ν) where µ : A→ T ∗M and ν : A→ ∧2T ∗M such that

(1) 〈µ(a), ρA(b)〉 = −〈µ(b), ρA(a)〉;
(2) µ([a, b]) = LρA(a)µ(b)− iρA(b)(dµ(a) + ν(a));
(3) ν([a, b]) = LρA(a)ν(b)− iρA(b)dν(a),
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for a, b ∈ Γ(A). In [2] (see also [3] for the case where ν = 0), it is shown that every
IM-2-form is associated to a 2-form Λ ∈ Ω2(A) whose associated map Λ] : TA →
T ∗A is a VB-algebroid morphism from (TA→ TM ;A→ M) to (T ∗A→ A∗;A→
M) inducing µ : A → T ∗M on the core bundles and −µ∗ : TM → A∗ on the side
bundles. Let σ ∈ Dec(TA) and σ∗A be its dual over the side bundle A. From [2] (see
Lemma 3.6 there), it follows that F = σ∗A ◦Λ] ◦ σ : A⊕ TM ⊕A→ A⊕A∗ ⊕ T ∗M
has components given by Fver = idA, Fhor = −µ∗, Fc = µ and

Φ = ν + d∇∗µ
∗ ∈ Ω1(A; Hom(TM, T ∗M)).

where ∇ is the connection on A associated to σ and d∇∗ : Ω(TM ;A∗)→ Ω(TM ;A∗)
the Koszul differential associated to the dual connection. Note that we are identify-
ing Ω2(TM,A∗) with Ω1(A;∧2T ∗M) and seeing ∧2T ∗M as a subset of Hom(TM, T ∗M).
So, as a result of Theorem 4.11, one has that (µ, ν) is an IM-2-form if and only if
(µ,−µ∗, ν + d∇∗µ

∗) are the components of a morphism from the adjoint represen-
tation ad∇(A) to the coadjoint representation ad>∇(A).

Example 4.17. Let (A, [·, ·], ρA) be a Lie algebroid such that its dual A∗ has also
a Lie algebroid structure (A∗, [·, ·]A∗ , ρA∗). It is shown in [12] that (A,A∗) is a Lie

bialgebroid if and only if π]A : T ∗A → TA is a VB-algebroid morphism from the
cotangent Lie algebroid (T ∗A → A∗, A → M) to the tangent prolongation (TA →
TM ;A → M), where πA ∈ Γ(∧2TA) is the linear Poisson bivector corresponding
to the Lie algebroid A∗. For any decomposition σ ∈ Dec(TA), it follows from

[12] (see Corollary 6.5 there) that σ−1 ◦ π]A ◦ (σ∗A)−1 : A ⊕ A∗ ⊕ T ∗M → A ⊕
TM ⊕ A has components given by Fver = idA, Fhor = ρA∗ , Fc = −ρ∗A∗ and Φ ∈
Ω1(A; Hom(A∗, A)) defined by

〈Φa(α), β〉 = −dA∗a(α, β) + 〈β,∇ρA∗ (α) a〉 − 〈α,∇ρA∗ (β) a〉, (α, β) ∈ A∗ ×M A∗,

where dA∗ : Γ(∧A) → Γ(∧A) is the Lie algebroid differential of A∗, ∇ : Γ(TM) ×
Γ(A)→ Γ(A) is the connection corresponding to σ and σ∗A is the dual of σ over A.
Note that

〈Φa(α), β)〉 = 〈a, T bas(α, β)〉,
where T bas is the torsion of the basic connection

Γ(A∗)× Γ(A∗) −→ Γ(A∗)
(α, β) 7−→ [α, β]A∗ +∇∗ρA∗ (β) α.

As a result of Theorem 4.11, we have that (A,A∗) is a Lie bialgebroid if and only if
(−ρ∗A∗ , ρA∗ , T bas) are the components of a morphism from the coadjoint represen-

tation ad>∇ to the adjoint representation ad∇.

5. Distributions and foliations.

Let qB : B → M be a vector bundle. A linear distribution on B is a subbundle
∆ ⊂ TB such that

(5.1)

∆ −−−−→ B

TqB

y yqB
∆M −−−−→ M

is a double vector bundle. It is called a linear foliation if ∆ is integrable (or, equiva-
lently, ∆→ B is a Lie subalgebroid of TB → B). Linear distributions and foliations
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are particular examples of double vector subbundles and VB-subalgebroids, respec-
tively. In this section we develop the general theory of these objects. Our goal is
to identify invariants of distributions and foliations on Lie algebroids.

5.1. Double vector subbundles and adapted decompositions.

Definition 5.1. Let (D′;A′, B′;M) be a double vector bundle. We say that (D;A,B;M)
is a double vector subbundle of D′ if

(1) (D;A;B;M) is a double vector bundle;
(2) D ⊂ D′; A ⊂ A′ and B ⊂ B′ are subbundles;
(3) the inclusion i : D ↪→ D′ is a morphism of double vector bundles inducing

the inclusions iA : A ↪→ A′ and iB : B ↪→ B′ on the side bundles.

Note that the core C ′ of D′ is a subbundle of C and the map i : D ↪→ D′ induces
the inclusion iC : C ′ ↪→ C on the core bundles.

Example 5.2. Let D′ = A′ ⊕B′ ⊕C ′ be the trivial double vector bundle with core
C ′. Given vector subbundles A ⊂ A′, B ⊂ B′ and C ⊂ C ′, the trivial double vector
bundle D = A⊕B ⊕C with core C is canonically a double vector subbundle of D′.

The inclusion of trivial double vector bundles of Example 5.2 should be seen as
a model for general double vector subbundles. Let us be more precise.

Definition 5.3. Let (D;A,B;M) be a double vector sub-bundle of (D′;A′, B′;M).
We say that a decomposition σ′ : A′⊕B′⊕C ′ → D′ is adapted to D if σ′(A⊕B⊕
C) = D. In this case, the induced decomposition σ := σ′|A⊕B⊕C of D makes the
diagram below commutative

(5.2) A⊕B ⊕ C

A′ ⊕B′ ⊕ C ′ D′

D
?�

OO

σ
//

σ′ //

?�
i

OO

where the left vertical arrow is the canonical inclusion of Example 5.2

A horizontal lift h : A′ → Â′ is adapted to D if its corresponding decomposition
σh (3.7) is adapted to D. Equivalently, h is adapted to D if and only if, for
a ∈ Γ(A), the linear section h(a) : B′ → D′ satisfies h(a)(B) ⊂ D. In this case, h|A
is a horizontal lift for D.

Example 5.4. A connection ∇ : Γ(TM) × Γ(B) → Γ(B) is adapted to a linear
distribution ∆ if for every x ∈ Γ(TM) the linear vector field X∇x : B → TB
corresponding to the derivation ∇x : Γ(B) → Γ(B) is a section of the distribution
∆.

Recall that Dec(D′), the space of decompositions of D′, is affine modelled over
Γ(A′∗ ⊗B′∗ ⊗ C ′). Define

(5.3) ΓA,B,C = {Φ ∈ Γ(A′∗ ⊗B′∗ ⊗ C ′) | Φa(B) ⊂ C, ∀ a ∈ A}.

Proposition 5.5. Let (D′;A′, B′;M) be a double vector bundle and A,B and C
vector subbundles of A′, B′ and C ′, respectively. There is a one-to-one correspon-
dence {

Double vector subbundles (D;A,B;M) of D′

having C as core bundle.

}
1−1←→ Dec(D′)

ΓA,B,C
.
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More precisely, for a double vector subbundle (D;A,B;M), the set of decompo-
sitions adapted to D is an orbit for ΓA,B,C . Reciprocally, given a decomposition
σ′ ∈ Dec(D′), the double vector subbundle D = σ′(A⊕B ⊕C) only depends on the
ΓA,B,C-orbit of σ′ and any decomposition in this orbit is adapted to D.

Proof. For a double vector subbundle (D;A,B;M), we shall first prove that de-
compositions adapted to D always exist and then that they form an orbit for
ΓA,B,C . Begin with two arbitrary decompositions σ : A ⊕ B ⊕ C → D and
σ′ : A′ ⊕B′ ⊕C ′ → D′ and consider σ′−1 ◦ i ◦ σ : A⊕B ⊕C → A′ ⊕B′ ⊕C ′. It is
a morphism between trivial double vector bundles inducing the inclusions on A, B
and C. Hence, there exists Φ ∈ Γ(A∗ ⊗B∗ ⊗ C ′) such that

σ′−1 ◦ i ◦ σ(a, b, c) = (a, b, c+ Φa(b)).

For any Φ′ ∈ Γ(A′∗ ⊗ B′∗ ⊗ C ′) extending Φ (i.e. Φ′a(b) = Φa(b), ∀ a ∈ A, b ∈ B),
the decomposition Φ′ · σ′ is adapted to D. Now, if σ1, σ2 are arbitrary decompo-
sitions, there exists an unique Φ ∈ Γ(A′∗ ⊗ B′∗ ⊗ C ′) such that σ1 = Φ · σ2. It is
straightforward to check that they lie in the same orbit if and only if IΦ = σ−1

2 ◦σ1

(see (3.5)) preserves A⊕ B ⊕ C. This implies that the decompositions adapted to
D is an ΓA,B,C-orbit and that the map

Dec(D′)

ΓA,B,C
3 [σ′] 7→ σ′(A⊕B ⊕ C)

is well-defined. �

Now we will use Proposition 5.5 to classify linear distributions. Let (∆; ∆M , B;M)
be a linear distribution with core C ⊂ B and consider the quotient map π :
B → B/C. In the following, we identify Dec(TB) with the space of connections
∇ : Γ(B)→ Γ(T ∗M ⊗B).

Lemma 5.6. The map

Dec(TB)

Γ∆M ,B,C
−→

{
D : Γ(B)→ Γ(∆∗M ⊗ (B/C))

∣∣∣∣∣ Dx(fb) = fDx(b) + (Lxf)π(b),

∀ f ∈ C∞(M), b ∈ Γ(B), x ∈ Γ(∆M )

}

[∇] 7−→ (r ⊗ π) ◦ ∇
is a bijection, where r : T ∗M → ∆∗M is the restriction map.

Proof. The fact that the map is well-defined follows directly from the definition of
the affine action (3.6) on the space of connections. Let us now prove that given
D : Γ(B)→ Γ(∆∗M ⊗ (B/C)) satisfying the Leibniz equation

(5.4) Dx(fb) = fDx(b) + (Lxf)π(b),

there exists a connection ∇ ∈ Dec(TB) such that D = (r ⊗ π) ◦ ∇. For this, let s :
B/C → B be a linear section for the quotient projection π : B → B/C and identify

B with (B/C)⊕ C using s. Also, choose a connection ∇̃ : Γ(TM)× Γ(B)→ Γ(B)
which preserves both B and B/C.

First, note that formula (5.4) implies that, for x ∈ Γ(∆M ), Dx : Γ(B)→ Γ(B/C)
is actually linear when restricted to Γ(C). Second, note that (5.4) implies that the
map

Dx ◦ s : Γ(B/C) −→ Γ(B/C)
γ 7−→ Dx(s(γ))
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is a derivation on B/C having x ∈ Γ(∆M ) as symbol. So, define Φ̃ ∈ Γ(T ∗M ⊗
B∗ ⊗B)

Φ̃x(γ) =


{
s ◦ Dx(γ), if γ ∈ C;

(Dx ◦ s− ∇̃x)(γ), if γ ∈ B/C;
if x ∈ Γ(∆M );

0, otherwise.

It is now straightforward to check that the connection ∇ : Γ(B) → Γ(T ∗M ⊗ B)

given by ∇ = ∇̃+ Φ̃ satisfies D = (r ⊗ π) ◦ ∇. �

For a linear distribution (∆; ∆M , B;M) with core C, one can canonically con-
struct a map D∆ : Γ(B)→ Γ(∆∗M ⊗ (B/C)) satisfying (5.4) as follows:

(5.5) D∆
x (b) = π ◦ LX(b), x ∈ Γ(∆M ), b ∈ Γ(B),

where X : B → ∆ is any linear section covering x, LX : Γ(B) → Γ(B) is the
derivation defined by

(5.6) LX(b)↑ = [X, b↑], for b ∈ Γ(B).

It is straightforward to check that π◦LX depends only on x and not on the particular
choice of X : B → ∆.

Theorem 5.7. A connection ∇ : Γ(B)→ Γ(T ∗M ⊗B) is adapted to ∆ if and only
if

(5.7) (r ⊗ π) ◦ ∇ = D∆.

In particular, the map ∆ 7→ D∆ establishes a one-to-one correspondence between
linear distributions (∆; ∆M , B;M) with core C and R-linear maps D : Γ(B) →
Γ(∆∗M ⊗ (B/C)) satisfying the Leibniz equation (5.4).

Proof. If ∇ is adapted to ∆, then the linear vector field X∇x
: B → TB corre-

sponding to the derivation ∇x : Γ(B) → Γ(B) is a linear section of ∆. Hence, it
follows from the definition (5.5) that

D∆
x = π ◦ LX∇x

= π ◦ ∇x,

for x ∈ Γ(∆M ). On the other hand, if (5.7) holds, then, for every x ∈ Γ(∆M ), there
exists a linear section X : B → ∆ covering x such that δ := ∇x−LX ∈ Hom(B,C),
where LX is the derivation defined by (5.6). In terms of sections,

X∇x = X + δ↑.

As C is the core bundle of ∆, one gets that X∇x
is a section of ∆ and, therefore,

∇ is adapted to ∆. The last statement follows from Lemma (5.6). �

Remark 5.8. If one considers the Lie groupoid B ⇒M , where the source and the
target are the projection qB : B → M and the multiplication is addition on the
fibers, then a linear distribution is just a multiplicative distribution in the sense
of [5, 9]. In this situation, the one-to-one correspondence above was also obtained
in [5] for ∆M = TM . The map D∆ is called by the authors the Spencer operator
relative to π.
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5.2. Infinitesimal ideal systems, distributions on Lie algebroid and sub-
representations. Let us recall the definition of an infinitesimal ideal system [7, 9]
on a Lie algebroid (A, [·, ·]A, ρA).

Definition 5.9. An infinitesimal ideal system on A is a triple (∆M , C, ∇̃), where

C ⊂ A is a subalgebroid, ∆M ⊂ TM is a integrable distribution and ∇̃ : Γ(∆M )×
Γ(A/C)→ Γ(A/C) is a flat connection satisfying the following properties:

(1) if π(a) is parallel, then [a,Γ(C)]A ⊂ Γ(C).
(2) if π(a), π(b) are parallel, then π([a, b]A) is parallel;
(3) if π(a) is parallel, then [ρ(a),Γ(∆M )] ⊂ Γ(∆M );

where a, b ∈ Γ(A) and π : A→ A/C is the quotient map.

Given an infinitesimal ideal system (∆M , C, ∇̃) on A, it follows from Theorem
5.7 that there exists an associated linear distribution (∆; ∆M , A;M) on A having
core C corresponding to an operator D : Γ(A) → Γ(∆∗M ⊗ (A/C)) defined as zero

on C and equal to ∇̃ on the quotient A/C. The paper [9] shows that the properties
of an infinitesimal ideal system are equivalent to ∆ → ∆M and ∆ → A being Lie
subalgebroids of TA → TM and TA → A, respectively. In this section, we prove
this in an alternative manner, using representations up to homotopy. Along the
way, we shall understand necessary and sufficient conditions on D for ∆→ ∆M to
be a Lie subalgebroid of TA → TM and for and ∆ → A to be a Lie subalgebroid
of TA→ A.

Let us start with the definition of VB-subalgebroids.

Definition 5.10. Let (D′ → B′;A′ → M) be a VB-algebroid. We say that a
double vector subbundle (D;A,B;M) is a VB-subalgebroid of D′ if D → B is a Lie
subalgebroid of D′ → B′.

Proposition 5.11. A double vector subbundle (D;A,B;M) is a VB-subalgebroid
of D′ if and only if

(1) (D → B;A→M) is a VB-algebroid;
(2) the inclusion map i : (D → B;A → M) ↪→ (D′ → B′;A′ → M) is a
VB-algebroid morphism.

Proof. It is straightforward to see that conditions (1) and (2) imply that D is a
VB-subalgebroid of D′. Conversely, assume that D → B is a Lie subalgebroid of
D′ → B′. The fact that the inclusion i : D → D′ is a bundle morphism over
iA : A→ A′ implies that the anchor of D, ρD = ρD′ ◦ i, is a bundle morphism over
ρA = ρA′ ◦ iA. To prove that (D → B;A→M) is a VB-algebroid, we still have to
check conditions (i), (ii) and (iii) of Definition 4.1. These will follow from exactly
the same conditions on D′ if we prove that core (respectively linear) sections of D
can be extended to core (respectively linear) sections of D′. Now, (3.1) implies that

Γc(B,D) = {ĉ |B | c ∈ Γ(C) and ĉ ∈ Γc(B
′, D′)}.

Also, for X : B → D, a linear section of D covering a ∈ Γ(A), choose any horizontal

lift h′ : A′ → Â′ adapted to D (the existence of which is guaranteed by Proposition
5.5). For b ∈ B,

X (b) -
B
h(a)(b) = 0̃Bb +

A

Φa(b),

for some Φ ∈ Ω1(A,Hom(B,C)). Extend Φ to Φ′ ∈ Ω(A′,Hom(B′, C ′)). The
horizontal lift h′′ = h′ + Φ′ is still adapted to D and X = h′′(a)|B . �
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Definition 5.12. Let W ∈ Rep2(A) be a 2-term representation of a Lie algebroid
A and let (∂,∇,K) be its structure operators. We say that a (graded) subbundle
V ⊂ W is a subrepresentation if V ∈ Rep2(A) and (iV0 , iV1 , 0) are the components
of a morphism (A, V ) ⇒ (A,W ), where iV0

: V0 ↪→ W0 and iV1
: V1 ↪→ W1 are the

inclusions and 0 ∈ Γ(A∗ ⊗ V ∗1 ⊗W0).

Remark 5.13. If (∂,∇,K) are the structure operators for W ∈ Rep2(A), then
V ⊂W is a subrepresentation if and only if

∂(V0) ⊂ V1;(5.8)

∇a preserves V, ∀ a ∈ Γ(A)(5.9)

K(a1, a2)(V1) ⊂ V0,∀ a1, a2 ∈ A.(5.10)

In this case, the restrictions (∂|V0 ,∇|V ,K|V1) are the structure operators for the
representation up to homotopy of A on V . This follows directly from equations
(2.2), (2.3) and (2.4).

Let us give an example.

Example 5.14. Let ∇ : Γ(TM)×Γ(B)→ Γ(B) be a connection on B and consider
the double representation D∇(B) ∈ Rep2(TM) (see Example 2.4). Given a vector
subbundle C ⊂ B, the graded vector bundle C[0]⊕B[1] is a subrepresentation if and

only if ∇ preserves C and the induced connection on the quotient ∇̂ : Γ(TM) ×
Γ(B/C)→ Γ(B/C) is flat.

The following result shows how VB-subalgebroids and subrepresentations are
related.

Theorem 5.15. Let W = C ′[0] ⊕ B′[1] ∈ Rep2(A′) be the representation up to

homotopy corresponding to a VB-algebroid structure on (A′ ⊕B′ ⊕ C ′ → B′;A′ →
M). Then (A ⊕ B ⊕ C → B;A → M) is a VB-subalgebroid if and only if A ⊂ A′

is a subalgebroid and C[0] ⊕ B[1] is a subrepresentation of i!AW ∈ Rep2(A), where
iA : A ↪→ A′ is the inclusion.

Proof. Assume A ⊕ B ⊕ C is a VB-subalgebroid of D′. By Proposition (5.11), it
follows that (A⊕B⊕C → B;A→M) is a VB-algebroid, so there is a corresponding
Lie algebroid structure on A and V = C[0] ⊕ B[1] ∈ Rep2(A). As the inclusion
i : A ⊕ B ⊕ C ↪→ A′ ⊕ B′ ⊕ C ′ is a VB-morphism, it follows from Theorem 4.11
that the inclusion iA : A → A′ is a Lie algebroid morphism and (iC , iB , 0) are the
components of a morphism (A, V ) ⇒ (A′,W ) over the inclusion iA. Conversely,
assume that A ⊂ A′ is a subalgebroid and that V is a subrepresentation of i!AW .
The representation up to homotopy of A on V give (A ⊕ B ⊕ C → B;A → M) a
VB-algebroid structure and one can use Theorem (4.11) once again to prove that
the inclusion i : A⊕B ⊕C → A′ ⊕B′ ⊕C ′ is a VB-morphism. This concludes the
proof. �

Corollary 5.16. [5, 9] A linear distribution (∆; ∆M , B;M) on B with core bundle
C is involutive if and only if ∆M is involutive and the associated map D∆ : Γ(B)→
Γ(∆∗M ⊗ (B/C)) satisfies

(1) D∆|Γ(C) = 0;
(2) the map induced on the quotient Γ(B/C)→ Γ(∆∗M ⊗ (B/C)) is a flat ∆M -

connection on B/C.
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Proof. ∆ is involutive if and only if (∆; ∆M ;A;M) is a VB-subalgebroid of the
double (TA → A;TM → M). Choose any connection ∇ : Γ(TM)× Γ(A) → Γ(A)
with

π ◦ ∇x = D∆
x , ∀x ∈ Γ(∆M )

and consider the double representation D∇(B) ∈ Rep2(TM). It is the representa-
tion up to homotopy of TM associated to the VB-algebroid (TB → B;TM →M)
decomposed by the choice of ∇. As ∇ is adapted to ∆ (see Theorem 5.7), it fol-
lows from Theorem 5.15 that ∆ is involutive if and only if ∆M is involutive and
C[0]⊕B[1] is a subrepresentation of i !

∆M
D∇ ∈ Rep2(∆M ), where i∆m

: ∆M ↪→ TM
is the inclusion. The result now follows from Example 5.14. �

Compatibility with the Lie algebroid structure. Let ∇ : Γ(TM) × Γ(A) → Γ(A) be
a connection on the Lie algebroid A and consider the adjoint representation ad∇.
The graded subbundle C[0] ⊕∆M, [1] ⊂ A[0] ⊕ TM[1] is a subrepresentation of ad∇
if and only if ρA(C) ⊂ ∆M and

[a, c] +∇ρ(c) a ∈ Γ(C);(5.11)

[ρA(a), x] + ρA(∇xa) ∈ Γ(∆M );(5.12)

Rbas(a, b)(∆M ) ⊂ C;(5.13)

for a, b ∈ Γ(A), c ∈ Γ(C) and x ∈ Γ(∆M ). In the case ∇ is a connection adapted
to a linear distribution (∆;A,∆M ;M), equations (5.11), (5.12) and (5.13) can be
reinterpreted in terms of the D∆ (5.5) to give conditions for ∆ → ∆M to be a
Lie subalgebroid of TA→ TM . In the following, we shall need the quotient maps
π : A→ A/C and πTM : TM → TM/∆M .

Theorem 5.17. Let (∆; ∆M , A;M) be a linear distribution on A with core C and
choose any connection ∇ : Γ(TM) × Γ(A) → Γ(A) adapted to ∆. Then ∆ → ∆M

is a Lie subalgebroid of TA→ TM if and only if ρA(C) ⊂ ∆M ,

DρA(c)(a) = −π([a, c]);(5.14)

ρ̃A(Dx(a)) = −πTM ([ρA(a), x])(5.15)

Dx([a, b]A) = ∇̂bas
a Dx(b)− ∇̂bas

b Dx(a) + π(∇[ρA(b),x]a−∇[ρA(a),x]b)(5.16)

where ρ̃A : A/C → TM/∆M is the quotient map (i.e. ρ̃A ◦ π = πTM ◦ ρA) and

where ∇̂bas is the A-connection on the quotient A/C given by

∇̂bas
a π(b) = π([a, b] +∇ρ(b)a) = π(∇bas

a b)

for a, b ∈ Γ(A), c ∈ Γ(C) and x ∈ Γ(∆M ).

Proof. As ∇ is adapted to ∆, Theorem 5.15 assures that ∆ is compatible with the
Lie algebroid structure if and only if V = C[0] ⊕ ∆M [1] is a subrepresentation of

ad∇ ∈ Rep2(A). So, one is left to prove that (5.11), (5.12) and (5.13) correspond
to (5.14), (5.15) and (5.16). Now, by applying the quotient maps π and πTM to
(5.11) and (5.12), one has{

[a, c] +∇ρA(c) a ∈ Γ(C)

[ρA(a), x] + ρA(∇xa) ∈ Γ(∆M )
⇐⇒

{
π(∇ρA(c)a) = −π([a, c])

πTM (ρA(∇xa)) = −πTM ([ρA(a), x])

for every c ∈ Γ(C), a ∈ Γ(A) and x ∈ Γ(∆M ). The result now follows from
the fact that, for any adapted connection ∇, Dx = π ◦ ∇x, ∀x ∈ Γ(∆M ) and
πTM ◦ ρA = ρ̃A ◦ π.
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At last, using the explicit expression for Rbas, one has that (5.13) holds if and
only if

(5.17) π(∇x[a, b]− [∇xa, b]− [a,∇xb]−∇∇bas
b x a+∇∇bas

a x b) = 0,

for a, b ∈ Γ(A) and x ∈ Γ(∆M ). Now, note that

−[∇xa, b] +∇∇bas
a xb = [b,∇xa] +∇ρA(∇xa)b+∇[ρA(a),x]b = ∇bas

b ∇xa+∇[ρA(a),x]b

and similarly

[a,∇xb] +∇∇bas
b xa = ∇bas

a ∇xb+∇[ρA(b),x]a.

So, by definition of ∇̂bas, one has that (5.17) is equivalent to

Dx([a, b]) + ∇̂bas
b Dx(a)− ∇̂bas

a Dx(b) + π(∇[ρ(a),x]b−∇[ρA(b),x]a) = 0,

as required. �

Remark 5.18. In the particular case where ∆M = TM , one can get rid of the

choice of an adapted connection. Indeed, note that ∇̂bas can be alternatively given
by

∇̂bas
a b = π([a, b]) + Dρ(b)(a)

and (5.16) becomes

Dx([a, b]A) = ∇̂bas
a Dx(b)− ∇̂bas

b Dx(a) + D[ρA(b),x](a)− D[ρA(a),x](b).

In this form, Theorem 5.17 gives the infinitesimal counterpart of a result from
[5] characterizing (wide) multiplicative distributions in terms of Spencer operators
relative to π.

Our last result explains how infinitesimal ideal systems and representations up
to homotopy are related.

Theorem 5.19. Let A be a Lie algebroid over M . A triple (∆M , C, ∇̃) is an
infinitesimal ideal system if and only if

(1) ∆M ⊂ TM is integrable;
(2) C[0] ⊕∆M [1] is a subrepresentation of ad∇(A) and

(3) C[0] ⊕A[1] is a subrepresentation of i!∆M
D∇(A),

i∆M
: ∆M ↪→ TM is the inclusion and ∇ : Γ(TM)×Γ(A)→ Γ(A) is any connection

preserving C and inducing ∇̃ on the quotient.

Proof. Define D : Γ(A)→ Γ(∆∗M ⊗ (A/C)) by

Dx(a) = ∇̃xπ(a), a ∈ Γ(A), x ∈ Γ(∆M ).

By Theorem (5.7), there exists a linear distribution (∆; ∆M , A;M) with core C such

that D = D∆ (5.5). We already know (see [9]) that (∆M , C, ∇̃) is an infinitesimal
ideal system if and only ∆→ A and ∆→ ∆M are simultaneously Lie subalgebroids
of TA → A and TA → TM , respectively. The result now follows directly from
Theorem (5.15). �
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Appendix A. Dualization of VB-algebroids and representations up to
homotopy.

Let (D;A,B;M) be a double vector bundle and consider its horizontal (3.10)
and vertical (3.12) duals. The vector bundles pver

C∗
: D∗A → C∗ and phor

C∗
: D∗B → C∗

are dual to each other via the nondegenerate pairing ‖·, ·‖ : D∗A×C∗ D∗B → R given
by

(A.1) ‖Θ,Ψ‖ := 〈Ψ, d〉B − 〈Θ, d〉A
where d ∈ D is any element with qDA (d) = pA(Θ) and qDB (d) = pB(Ψ) [10]. The
pairings on the right-hand side of (A.1) are defined with respect to the fibers over
B and over A, respectively. Henceforth, we identify the dual of D∗B → C∗ with
D∗A → C∗ via the pairing in (A.1). Given a section Θ : C∗ → D∗A, we denote

by `C
∗

Θ ∈ C∞(D∗B) the function which is linear with respect to the vector bundle
structure D∗B → C∗ and given by

`C
∗

Θ (Ψ) = ‖Θ(phor
C∗

(Ψ)),Ψ‖.

In particular, for the core section ψ̂ ∈ Γ(C∗, D∗A) associated to some ψ ∈ Γ(B∗),
one gets by choosing d = 0DpB(Ψ) in (A.1):

(A.2) `C
∗

ψ̂
= −`ψ ◦ pB .

Also, for T ∈ Γ(B∗ ⊗ C),

(A.3) `C
∗

T̂∗
= −`T̂ ,

where T̂ ∈ Γ`(B,D) and T̂ ∗ ∈ Γ`(C
∗, D∗A) are the linear sections (3.3) correspond-

ing to T and its dual T ∗ ∈ Γ(C∗ ⊗B), respectively.
We shall need one more formula (which follows directly from (3.11)) for c ∈ Γ(C)

and the corresponding core section ĉ ∈ Γ(B,D), namely

(A.4) `ĉ = `c ◦ phor
C∗ .

Assume now that (D → B;A → M) is a VB-algebroid. Then (D∗A → C∗;A →
M) has a natural VB-algebroid structure. The Lie algebroid structure on D∗A → C∗

is obtained by noticing that the linear Poisson structure on D∗B → B associated to
the Lie algebroid D → B is also linear with respect to the vector bundle structure
D∗B → C∗ 2. In particular, besides the usual formulas

`[χ1,χ2]D = {`χ1 , `χ2}D∗B , LρD(χ)(f) ◦ pB = {`χ, f ◦ pB}D∗B ,
defining the Lie bracket [·, ·]D and the anchor ρD on D → B, for χ, χ1, χ2 ∈ Γ(B,D)
and f ∈ C∞(B), we have

`C
∗

[Θ1,Θ2]D∗
A

= {`C
∗

Θ1
, `C

∗

Θ2
}D∗B , LρD∗A (Θ)(g) ◦ phor

C∗ = {`C
∗

Θ , g ◦ phor
C∗ }D∗B ,

defining the Lie bracket [·, ·]D∗A and the anchor ρD∗A on D∗A → C∗, for Θ,Θ1,Θ2 ∈
Γ(C∗, D∗A) and g ∈ C∞(C∗). We refer to [10] (see also [6]) for more details.

2Let qE : E → M be a vector bundle. A Poisson bracket {· , ·} on C∞(E) is linear if for all
ξ, ξ′ ∈ Γ(E∗) and f, f ′ ∈ C∞(M), the bracket {`ξ, `ξ′} is again linear, the bracket {q∗Ef, q

∗
Ef
′}

vanishes and {`ξ, q∗Ef} is the pullback under qE of a function on M . This defines a Lie algebroid

(E∗ → M,ρ, [· , ·]) by setting `[ξ,ξ′] := {`ξ, `ξ′} and q∗E(Lρ(ξ)f) := {`ξ, q∗Ef}. Conversely, a Lie

algebroid structure on E∗ defines a linear Poisson structure on E.
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Our aim here is to prove that the representations up to homotopy associated to
D → B and D∗A → C∗ are dual to each other. Let us first consider how horizontal
lifts for (D;A,B;M) and (D∗A;A,C∗;M) are related. Let h : Γ(A)→ Γ`(B,D) be
a horizontal lift for D. There exists a corresponding horizontal lift h> : Γ(A) −→
Γ`(C

∗, D∗A) given as follows: take the decomposition σh ∈ Dec(D) associated to h

by (3.7) and consider the inverse of its dual over A, (σh)∗
−1

A ∈ Dec(D∗A). Set h>

to be the horizontal lift corresponding to (σh)∗
−1

A via (3.8). It is straightforward to
check that

(A.5) `h(a) = `C
∗

h>(a) ∈ C
∞(D∗B)

for every a ∈ Γ(A).
Let (∂,∇,K) be the structure operators of the representation up to homotopy

C[0] ⊕ B[1] ∈ Rep2(A) associated to (D,h) and (∂ver,∇ver,Kver) be the structure

operators of the representation up to homotopy B∗[0] ⊕ C
∗
[1] ∈ Rep2(A) associated

to (D∗A, h
>). The next result relates the two representations.

Proposition A.1. The structure operators (∂ver,∇ver,Kver) coincide with the
structure operators (2.5) of the representation (C[0] ⊕ B[1])

> ∈ Rep2(A) dual to
(∂,∇,K).

Proof. Let c ∈ Γ(C) and ψ ∈ Γ(B∗). By (4.1), we have

〈∂ver(ψ), c〉 ◦ qC∗ ◦ phor
C∗ = LρD∗

A
(ψ̂)(`c) ◦ p

hor
C∗ = {`C∗

ψ̂
, `c ◦ phor

C∗ }D∗B
= −{`ψ ◦ pB , `ĉ}D∗B = LρD(ĉ)(`ψ) ◦ pB
= 〈ψ, ∂(c)〉 ◦ qB ◦ pB .

Since q∗C ◦ phor
C∗ = qB ◦ pB , the equality ∂ver = ∂∗ follows.

Let us prove the relation between the A-connections. By (4.1) and (4.2) together
with (A.2) and (A.5), one has that

`∇ver
a ψ ◦ pB = −`C∗

∇̂ver
a ψ

= −`C∗
[h>(a),ψ̂]D∗

A

= −{`C∗h>(a), `
C∗

ψ̂
}D∗B

= {`h(a), `ψ ◦ pB}D∗B = LρD(h(a))(`ψ) ◦ pB = `∇∗aψ ◦ pB .
Similarly,

`∇ver∗
a c ◦ phor

C∗ = LρD∗
A

(h>(a))(`c) ◦ phor
C∗ = {`C∗h>(a), `c ◦ p

hor
C∗ }D∗B = {`h(a), `ĉ}D∗B

= `[h(a),ĉ]D = `∇̂ac
= `∇ac ◦ phor

C∗ .

Hence, we have verified the equality ∇ver = ∇∗.
It remains to compare the curvatures. For that, choose a1, a2 ∈ Γ(A) and let

K̂ ∈ Γ`(B,D) and K̂ver ∈ Γ`(C
∗, D∗A) be the linear sections (3.3) corresponding to

K(a1, a2) ∈ Γ(B∗ ⊗C) and Kver(a1, a2) ∈ Γ(C∗ ⊗B) respectively. First note that,
by (A.5),

`C
∗

[h>(a1), h>(a2)]D∗
A

=
{
`C
∗

h>(a1), `
C∗

h>(a2)

}
D∗B

=
{
`h(a1), `h(a2)

}
D∗B

= `[h(a1),h(a2)]D

Therefore, by (4.3) and (A.3), we find

`C
∗

K̂ver
= `C

∗

[h>(a1),h>(a2)]D∗
A
−h>([a1,a2]A) = `[h(a1),h(a2)]D−h([a1,a2]A) = `K̂ = −`C

∗

K̂∗

This proves that Kver = −K∗. �
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